Conditional Results on the Birational Section Conjecture over Small Number Fields
نویسندگان
چکیده
In the present paper, we give necessary and sufficient conditions for a birational Galois section of a projective smooth curve over either the field of rational numbers or an imaginary quadratic field to be geometric. As a consequence, we prove that, over such a small number field, to prove the birational section conjecture for projective smooth curves, it suffices to verify that, roughly speaking, for any birational Galois section of the projective line, the local points associated to the birational Galois section avoid distinct three rational points, and, moreover, a certain Galois representation determined by the birational Galois section is unramified at all but finitely many primes. Moreover, as another consequence, we obtain some examples of projective smooth curves for which any prosolvable birational Galois section is geometric.
منابع مشابه
On the ‘Section Conjecture’ in anabelian geometry
Let X be a smooth projective curve of genus > 1 over a field K with function field K(X), let π1(X) be the arithmetic fundamental group of X over K and let GF denote the absolute Galois group of a field F . The section conjecture in Grothendieck’s anabelian geometry says that the sections of the canonical projection π1(X) → GK are (up to conjugation) in one-to-one correspondence with the K-ratio...
متن کاملZ/p metabelian birational p-adic section conjecture for varieties
In this manuscript we generalize the Z/p metabelian birational p-adic Section Conjecture for curves, as introduced and proved in Pop [P2], to all complete smooth varieties. As a consequence one gets a minimalistic p-adic analog of the famous Artin–Schreier theorem on the Galois characterization of the orderings of fields.
متن کاملON THE BIRATIONAL p-ADIC SECTION CONJECTURE
In this manuscript we introduce/prove a Z/p meta-abelian form of the birational p-adic Section Conjecture for curves. This is a much stronger result than the usual p-adic birational Section Conjecture for curves, and makes an effective p-adic Section Conjecture for curves quite plausible.
متن کاملPro-p hom-form of the birational anabelian conjecture over sub-p-adic fields
We prove a Hom-form of the pro-p birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.
متن کاملThe pro-p Hom-form of the birational anabelian conjecture
We prove a pro-p Hom-form of the birational anabelian conjecture for function fields over sub-p-adic fields. Our starting point is the corresponding Theorem of Mochizuki in the case of transcendence degree 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012